extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C2×C3⋊S3) = C2×C33⋊S3 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C32 | 18 | 6+ | C3^2.1(C2xC3:S3) | 324,77 |
C32.2(C2×C3⋊S3) = C2×He3.3S3 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C32 | 54 | 6+ | C3^2.2(C2xC3:S3) | 324,78 |
C32.3(C2×C3⋊S3) = C2×He3⋊S3 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C32 | 54 | 6+ | C3^2.3(C2xC3:S3) | 324,79 |
C32.4(C2×C3⋊S3) = C2×3- 1+2.S3 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C32 | 54 | 6+ | C3^2.4(C2xC3:S3) | 324,80 |
C32.5(C2×C3⋊S3) = C2×C33.S3 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C32 | 54 | | C3^2.5(C2xC3:S3) | 324,146 |
C32.6(C2×C3⋊S3) = C2×He3.4S3 | φ: C2×C3⋊S3/C6 → S3 ⊆ Aut C32 | 54 | 6+ | C3^2.6(C2xC3:S3) | 324,147 |
C32.7(C2×C3⋊S3) = S3×C9⋊S3 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C32 | 54 | | C3^2.7(C2xC3:S3) | 324,120 |
C32.8(C2×C3⋊S3) = S3×He3⋊C2 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.8(C2xC3:S3) | 324,122 |
C32.9(C2×C3⋊S3) = C2×C9⋊D9 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C32 | 162 | | C3^2.9(C2xC3:S3) | 324,74 |
C32.10(C2×C3⋊S3) = C2×C32⋊2D9 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C32 | 36 | 6 | C3^2.10(C2xC3:S3) | 324,75 |
C32.11(C2×C3⋊S3) = C6×C9⋊S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.11(C2xC3:S3) | 324,142 |
C32.12(C2×C3⋊S3) = C2×C32⋊4D9 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C32 | 162 | | C3^2.12(C2xC3:S3) | 324,149 |
C32.13(C2×C3⋊S3) = C6×He3⋊C2 | central extension (φ=1) | 54 | | C3^2.13(C2xC3:S3) | 324,145 |